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In active perception tasks, an agent aims to select actions that reduce its uncer-
tainty about a hidden state. While partially observable Markov decision processes
(POMDPs) are a natural model for such problems, reward functions that directly
penalize uncertainty in the agent’s belief can remove the piecewise-linear and con-
vex (PWLC) property of the value function required by most POMDP planners.
This paper analyses ρPOMDP and POMDP-IR, two frameworks that restore the
PWLC property in active perception tasks. We establish the mathematical equiv-
alence of the two frameworks and show that both admit a decomposition of the
maximization performed in the Bellman backup, yielding substantial computa-
tional savings. We also present an empirical analysis on data from real multi-
camera tracking systems that illustrates these savings and analyzes the critical
factors in the performance of POMDP planners in such tasks.
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1 Introduction

In an active perception task [19, 20], an agent must decide what actions to take to efficiently
reduce its uncertainty about one or more hidden state variables. For example, a mobile robot
armed with a camera must decide where to go to find a particular person or object. Similarly, an
agent controlling a network of cameras with computational, bandwidth, or energy constraints
must decide which subset of the cameras to use at each timestep.

A natural decision-theoretic model for active perception is the partially observable Markov
decision process (POMDP) [3, 10, 18]. However, in a typical POMDP, reducing uncertainty about
the state is only a means to an end. For example, a robot whose goal is to reach a particular
location may take sensing actions that reduce its uncertainty about its current location because
doing so helps it determine what future actions will bring it closer to its goal. By contrast, in
active perception POMDPs, reducing uncertainty is an end in itself. For example, a surveillance
system’s goal is typically just to ascertain the state of its environment, not use that knowledge
to achieve another goal. While perception is arguably always performed to aid decision-making,
in an active perception problem that decision is made by another agent such as a human, that
is not modeled as part of the POMDP. For example, a surveillance system may be tasked with
detecting suspicious activity but only the human users of the system may decide how react to
such activity.

One way to formulate uncertainty reduction as an end in itself is to define a reward function
whose additive inverse is some measure of the agent’s uncertainty about the hidden state, e.g.,
the entropy of its belief [6]. However, this leads to a reward function that conditions on the belief,
rather than the state, and thus can remove the piecewise-linear and convex (PWLC) property of
the value function [2], which is exploited by most POMDP planners. Recently, two approaches
have been proposed to address this problem.

ρPOMDP [2] extends the POMDP formalism to allow belief-dependent rewards. A PWLC
approximation is then formed by selecting a set of vectors tangent to this reward. With minor
modifications, existing POMDP planners that rely on the PWLC property of the value function
can then be employed. By contrast, POMDP with information rewards (POMDP-IR) [21] works
within a standard POMDP but adds prediction actions that allow the agent to make predictions
about the hidden state. A state-based reward function rewards the agent for accurate predictions.
Since the reward function does not directly depend on the belief, the PWLC property is preserved
and standard POMDP planners can be applied.

To the best of our knowledge, no previous research has examined the relationship between
these two approaches to active perception, their respective pros and cons, or their efficacy in
realistic tasks. In this paper, we address this gap by presenting a theoretical and empirical
analysis of ρPOMDP and POMDP-IR. In particular, we make the following three contributions.

First, we establish the mathematical equivalence between ρPOMDP and POMDP-IR. Specif-
ically, we show that any ρPOMDP can be translated into a POMDP-IR (and vice-versa) that
preserves the value function for equivalent policies. Our main insight is that each tangent in
ρPOMDP can be viewed as a vector describing the value of a prediction action in POMDP-IR.

Second, we observe that selecting prediction actions in a POMDP-IR does not require looka-
head planning. Consequently, the maximization performed during backups can be decomposed
and, although the addition of prediction actions causes a blowup in the agent’s action space, the
additional computational costs those actions introduce can be controlled. In addition, thanks to
the equivalence between POMDP-IR and ρPOMDP that we establish, this decomposition holds
also for ρPOMDP.

Third, we present an empirical analysis conducted on multiple active perception POMDPs
learned from datasets gathered on real multi-camera tracking systems. Our results confirm the
computational benefits of decomposing the maximization, measure the effects on performance of
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the choice of prediction actions/tangents, and compare the costs and benefits of myopic versus
non-myopic planning. Finally, we identify and study critical factors relevant to the performance
and behaviour of agent in active perception tasks.

2 POMDPs

A POMDP is a tuple 〈S,A,Ω, T,O,R, b0, h〉 [10]. At each timestep, the environment is in a state
s ∈ S, the agent takes an action a ∈ A and receives a reward whose expected value is R(s, a),
and the system transitions to a new state s′ ∈ S according to the transition function T (s, a, s′) =
Pr(s′|s, a). Then, the agent receives an observation z ∈ Ω according to the observation function
O(s′, a, z) = Pr(z|s′, a). The agent maintains a belief b(s) about the state using Bayes rule:

ba,z(s′) =
O(s′, a, z)

Pr(z|a, b)
∑
s∈S

T (s, a, s′)b(s), (1)

where Pr(z|a, b) =
∑

s,s′′∈S O(s′′, a, z)T (s, a, s′′)b(s) and ba,z(s′) is the agent’s belief about s′

given that it took action a and observed z. The agent’s initial belief is b0.

A policy π specifies for each belief how the agent will act. A POMDP planner aims to find

a policy π∗ that maximizes the expected cumulative reward: π∗ = maxπ E[
h−1∑
t=0

rt | at = π(bt)],

where h is a finite time horizon and rt, at, and bt are the reward, action, and belief at time t.
Given b(s) and R(s, a), the belief-based reward, ρ(b, a) is:

ρ(b, a) =
∑
s

b(s)R(s, a). (2)

The t-step value function of a policy π can be calculated recursively using the Bellman
equation:

V π
t (b) =

[
ρ(b, aπ) +

∑
z∈Ω

Pr(z|aπ, b)V π
t−1(baπ ,z)

]
, (3)

where aπ = π(b). The optimal value function V ∗t (b) can be computed recursively as:

V ∗t (b) = max
a

[
ρ(b, a) +

∑
z∈Ω

Pr(z|a, b)V ∗t−1(ba,z)

]
. (4)

An important consequence of these equations is that the value function is piecewise-linear
and convex (PWLC), a property exploited by most POMDP planners. Sondik [18] showed that
a PWLC value function at any finite horizon t can be expressed as a set of vectors: Γt =
{α0, α1, . . . , αm}. Each αi represents an |S|-dimensional hyperplane defining the value function
over a bounded region of belief space. The value of a given belief point can be computed from
the vectors as:

V ∗t (b) = max
αi∈Γt

∑
s

b(s)αi(s) (5)

Exact POMDP solvers compute the value function for all possible belief points by computing
the optimal Γt using the following recursive algorithm. For each action a and observation z, an
intermediate Γa,zt is computed from Γt−1:

Γa,zt = {αa,zi : αi ∈ Γt−1}, (6)
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where, for all s ∈ S,

αa,zi (s) =
∑
s′∈S

T (s, a, s′)O(s′, a, z)αi(s
′). (7)

The next step is to take a cross-sum1 over Γa,zt sets.

Γat = R(s, a)⊕ Γa,z1t ⊕ Γa,z2t ⊕ . . . (8)

Then, we take the union of all the Γat -sets and prune any dominated α-vectors:

Γt = prune(∪a∈AΓat ). (9)

For each αi in the set, prune solves a linear program to determine whether it is dominated,
i.e., whether for all b there exists an αj 6= αi such that

∑
s b(s)αj(s) ≥

∑
s b(s)αi(s).

Point-based planners [14, 17, 22] avoid the expense of solving for all belief points by com-
puting Γt only for a set of sampled beliefs B. At each iteration, Γa,zt is generated from Γt−1 for
each a and z just as in (6) and (7). However, Γat is computed only for the sampled beliefs, i.e.,
Γat = {αab : b ∈ B}, where:

αab (s) = R(s, a) +
∑
z∈Ω

arg max
α∈Γa,zt

∑
s

b(s)α(s). (10)

Finally, the best α-vector for each b ∈ B is selected:

αb(s) = arg max
αab

∑
s

b(s)αab (s)

Γt = ∪b∈B αb.
(11)

3 Active Perception POMDPs

The goal in an active perception POMDP is to reduce uncertainty about an object of interest
that is not directly observable. In general, the object of interest may be only part of the state,
e.g., if a surveillance system cares only about people’s positions, not their velocities, or higher-
level features derived from the state, e.g., that same surveillance system may care only how
many people are in a given room. However, for simplicity, we focus on the case where the object
of interest is simply the state s of the POMDP. Furthermore, we focus on pure active perception
tasks in which the agent’s only goal is to reduce uncertainty about the state, as opposed to
hybrid tasks where the agent may also have other goals. However, extending our results to such
hybrid tasks is straightforward.

A challenge in these settings is properly formalizing the reward function. Because the goal is
to reduce uncertainty, reward is a direct function of the belief, not the state, i.e., the agent has
no preference for one state over another, so long as it knows what that state is. Hence, there is no
meaningful way to define a state-based reward function R(s, a). Directly defining ρ(b, a) using,
e.g., negative belief entropy : −Hb(s) =

∑
s b(s) log(b(s)), creates other problems, since ρ(b, a)

is no longer a convex combination of a state-based reward function, it is no longer guaranteed
to be PWLC, a property both exact and point-based POMDP solvers rely on. In the following
subsections, we describe two recently proposed frameworks designed to address this problem.

1The cross-sum of two sets A and B contains all values resulting from summing one element from each set:

A⊕B = {a+ b : a ∈ A ∧ b ∈ B}.
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3.1 ρPOMDPs
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Figure 1: Defining Γρ with different sets of
tangents to the negative belief entropy curve in

a 2-state POMDP.

Araya-López et al. [2] proposed the ρPOMDP
framework for active perception tasks. A
ρPOMDP, defined by the tuple
〈S,A, T,Ω, O,Γρ, b0, h〉, is a normal POMDP
except that the state-based reward function
R(s, a) has been omitted and the belief-based
reward defined in the form of a set of vectors
Γρ has been added,

ρ(b) = max
αρ∈Γρ

∑
s

b(s)αρ(s). (12)

Since we consider only pure active perception
tasks, ρ depends only on b, not on a and can
thus be written ρ(b).

Restricting ρ to be a Γρ-set ensures that
it is PWLC. If the “true” reward function is
a non-PWLC function like negative belief en-
tropy, then it can be approximated by defining
Γρ to be a set of vectors that are tangent to the
true reward function. Figure 1 illustrates ap-
proximating negative belief entropy with dif-
ferent numbers of tangents.

Exactly solving a ρPOMDP requires a mi-
nor change to existing algorithms. In partic-
ular, since ρ now consists of a set of vectors for each a, as opposed to a single vector as in a
standard POMDP, an additional cross-sum is required to compute Γat : Γat = Γρ⊕Γa,z1t ⊕Γa,z2t ⊕. . .

Araya-López et al. [2] showed that the error in the value function computed by this approach,
relative to the true reward function, whose tangents were used to define Γρ, is bounded. How-
ever, their algorithm increases the computational complexity of solving the POMDP because it
requires |Γρ| more cross-sums at each iteration in order to generate the Γat set.

3.2 POMDPs with Information Rewards

Spaan et al. [21] proposed POMDPs with information rewards (POMDP-IR) [21], an alternative
framework for modeling active perception tasks that relies only on a standard POMDP. Instead of
directly rewarding low uncertainty in the belief, the agent is given the chance to make predictions
about the hidden state and rewarded, via a standard state-based reward function, for making
accurate predictions. Formally, a POMDP-IR is a POMDP in which each action a ∈ A is a tuple
〈an, ap〉 where an ∈ An is a normal action, e.g., moving a robot or turning on a camera, and
ap ∈ Ap is a prediction action, which expresses predictions about the state. The joint action
space is thus the Cartesian product of An and Ap, i.e., A = An ×Ap.

Prediction actions have no effect on states or observations but can trigger rewards via the
standard state-based reward function R(s, a). While there are many ways to define Ap and R,
a simple approach is to create one prediction action for each state, i.e., Ap = S, and give the
agent positive reward if and only if it correctly predicts the true state:

R(s, 〈an, ap〉) =

{
1, if s = ap

0, otherwise.
(13)
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Figure 2: Influence diagram for POMDP-IR.

Thus, POMDP-IR indirectly rewards beliefs with low uncertainty, since these enable more ac-
curate predictions and thus more expected reward. Furthermore, since a state-based reward
function is explicitly defined, ρ can be defined as a convex combination of R, as in (2), guaran-
teeing that the value function is PWLC, as in a regular POMDP. Thus, a POMDP-IR can be
solved with standard POMDP planners. However, the introduction of prediction actions leads
to a blowup in the size of the joint action space |A| = |An||Ap| of POMDP-IR.

Note that, though not made explicit in [21], several independence properties are inherent
to the POMDP-IR framework, as shown in Figure 2. In particular, because we focus on pure
active perception, the reward function R is independent of normal actions. Furthermore, state
transitions and observations are independent of prediction actions. In the rest of this paper, we
employ terminology for the reward, transition, and observation functions in a POMDP-IR that
reflect this independence, i.e., we write R(s, ap), T (s, an, s

′), and O(s′, an, z). In addition, we
show in Section 5 how to exploit this independence to speed up planning.

4 ρPOMDP & POMDP-IR Equivalence

In this section we show the relationship between these two frameworks by proving mathematical
equivalence of ρPOMDP and POMDP-IR. In particular, we show that solving a ρPOMDP is
equivalent to solving a translated POMDP-IR and vice-versa. We show this equivalence by
starting with a ρPOMDP and then translating it to a POMDP-IR. We then show that the
value function, V π

t for ρPOMDP we started with and the translated POMDP-IR are same.
To complete our proof, we repeat the same process by starting with a POMDP-IR and then
translating it to a ρPOMDP. We show that the value function V π

t for the POMDP-IR and the
corresponding ρPOMDP are same.

Definition 1. Given a ρPOMDP Mρ = 〈S,Aρ,Ω, Tρ, Oρ,Γρ, b0, h〉 the translate-pomdp-ρ-
IR(Mρ) produces a POMDP-IR MIR = 〈S,AIR,Ω, TIR, OIR, RIR, b0, h〉 via the following proce-
dure.

• The set of states, set of observations, initial belief and horizon remain unchanged.

• The set of normal actions in MIR is equal to the set of actions in Mρ, i.e., An,IR = Aρ;

• The set of prediction actions Ap,IR in MIR contains one prediction action for each αρ(s) ∈
Γρ.

• The transition and observation functions in MIR behave the same as in Mρ for each an
and ignore the ap, i.e., for all an ∈ An,IR: TIR(s, an, s

′) = Tρ(s, a, s
′) and OIR(s′, an, z) =

Oρ(s
′, a, z), where a ∈ Aρ corresponds to an.
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• The reward function in MIR is defined such that RIR(s, ap) = αρ(s), where αρ is the
α-vector corresponding to ap.

For example, consider a ρPOMDP with 2 states, if ρ is defined using tangents to belief
entropy at b(s1) = 0.3 and b(s1) = 0.7. When translated to a POMDP-IR, the resulting reward
function gives a small negative reward for correct predictions and a larger one for incorrect
predictions, with the magnitudes determined by the value of the tangents when b(s1) = 0 and
b(s1) = 1:

RIR(s, ap) =

{
−0.35, if s = ap

−1.12, otherwise.
(14)

Definition 2. Given a policy πρ for a ρPOMDP, Mρ, the translate-policy-ρ-IR(πρ) pro-
cedure produces a policy πIR for a POMDP-IR as follows. For all b,

πIR(b) = 〈πρ(b), arg max
ap

∑
s

b(s)R(s, ap)〉. (15)

That is, πIR selects the same normal action as πρ and the prediction action that maximizes
expected immediate reward.

Using these definitions, we prove that solving Mρ is the same as solving MIR.

Theorem 1. Let Mρ be a ρPOMDP and πρ an arbitrary policy for Mρ. Furthermore let MIR

= translate-pomdp-ρ-IR(Mρ) and πIR = translate-policy-ρ-IR(πρ). Then, for all b,

V IR
t (b) = V ρ

t (b), (16)

where V IR
t is the t-step value function for πIR and V ρ

t is the t-step value function for πρ.

Proof. By induction on t. To prove the base case, we observe that, from the definition of ρ(b),

V ρ
0 (b) = ρ(b) = max

αρ∈Γρ

∑
s

b(s)αρ(s). (17)

Since MIR has a prediction action corresponding to each αρ, thus the ap corresponding to
α = arg maxαρ∈Γρ

∑
s b(s)αρ(s), must also maximize

∑
s b(s)R(s, ap). Then,

V ρ
0 (b) = max

ap

∑
s

b(s)RIR(s, ap)

= V IR
0 (b).

(18)

For the inductive step, we assume that V IR
t−1(b) = V ρ

t−1(b) and must show that V IR
t (b) = V ρ

t (b).
Starting with V IR

t (b),

V IR
t (b) = max

ap

∑
s

b(s)R(s, ap) +
∑
z

Pr(z|b, πnIR(b))V IR
t−1(bπ

n
IR(b),z), (19)

where πnIR(b) denotes the normal action of the tuple specified by πIR(b) and:

Pr(z|b, πnIR(b)) =
∑
s

∑
s′′

OIR(s′′, πnIR(b), z)TIR(s, πnIR(b), s′′)b(s).

Using the translation procedure, we can replace TIR and OIR and πnIR(b) with their ρPOMDP
counterparts on right hand side of the above equation:

Pr(z|b, πnIR(b)) =
∑
s

∑
s′′

Oρ(s
′′, πρ(b), z)Tρ(s, πρ(b), s

′′)b(s)

= Pr(z|b, πρ(b)). (20)
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Similary, for the belief update equation,

bπ
n
IR(b),z =

OIR(s′, πnIR(b), z)

Pr(z|πnIR(b), b)

∑
s

b(s)TIR(s, πnIR(b), s′)

=
Oρ(s

′, πρ(b), z)

Pr(z|πρ(b), b)
∑
s

b(s)Tρ(s, πρ(b), s
′)

= bπρ(b),z.

(21)

Substituting the above result in (19) yields:

V IR
t (b) = max

ap

∑
s

b(s)R(s, ap) +
∑
z

Pr(z|b, πρ(b))V IR
t−1(bπρ(b),z). (22)

Since the inductive assumption tells us that V IR
t−1(b) = V ρ

t−1(b) and (18) shows that ρ(b) =
maxap

∑
s b(s)R(s, ap):

V IR
t (b) = [ρ(b) +

∑
z

Pr(z|b, πρ(b))V ρ
t−1(bπρ(b),z)]

= V ρ
t (b).

(23)

Definition 3. Given a POMDP-IR MIR = 〈S,AIR,Ω, TIR, OIR, RIR, b0, h〉 the translate-
pomdp-IR-ρ(MIR) produces a ρPOMDP Mρ = 〈S,Aρ,Ω, Tρ, Oρ,Γρ, b0, h〉 via the following
procedure.

• The set of states, set of observations, initial belief and horizon remain unchanged.

• The set of actions in Mρ is equal to the set of normal actions in MIR, i.e., Aρ = An,IR.

• The transition and observation functions in Mρ behave the same as in MIR for each
an and ignore the ap, i.e., for all a ∈ Aρ: Tρ(s, a, s

′) = TIR(s, an, s
′) and Oρ(s

′, a, z) =
OIR(s′, an, z) where an ∈ An,IR is the action corresponding to a ∈ Aρ.

• The Γρ in Mρ is defined such that, for each prediction action in Ap,IR, there is a cor-
responding α vector in Γρ, i.e., Γρ = {αρ(s) : αρ(s) = R(s, ap) for each ap ∈ Ap,IR}.
Consequently, by definition, ρ is defined as: ρ(b) = maxαρ [

∑
s b(s)αρ(s)].

Definition 4. Given a policy πIR = 〈an, ap〉. for a POMDP-IR, MIR, the translate-policy-
IR-ρ(πIR) procedure produces a policy πρ for a POMDP-IR as follows. For all b,

πρ(b) = πnIR(b), (24)

Theorem 2. Let MIR be a POMDP-IR and πIR = 〈an, ap〉 an policy for MIR, such that
ap = maxa′p b(s)R(s, a′p). Furthermore let Mρ = translate-pomdp-IR-ρ(MIR) and πρ =
translate-policy-IR-ρ(πIR). Then, for all b,

V ρ
t (b) = V IR

t (b), (25)

where V IR
t is the value of following πIR in MIR and V ρ

t is the value of following πρ in Mρ.
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Proof. By induction on t. To prove the base case, we observe that, from the definition of ρ(b),

V IR
0 (b) = max

ap

∑
s

b(s)R(s, ap)

=
∑
s

b(s)α(s) {where α(s) is the α(s) corresponding to

ap = maxa′p
∑

s b(s)R(s, a′p).}
= ρ(b)

= V ρ
0 (b)

(26)

For the inductive step, we assume that V ρ
t−1(b) = V IR

t−1(b) and must show that V ρ
t (b) =

V IR
t (b). Starting with V ρ

t (b),

V ρ
t (b) = ρ(b) +

∑
z

Pr(z|b, πρ(b))V ρ
t−1(bπρ(b),z), (27)

where πnIR(b) denotes the normal action of the tuple specified by πIR(b) and:

Pr(z|b, πρ(b)) =
∑
s

∑
s′′

Oρ(s
′′, πρ(b), z)Tρ(s, πρ(b), s

′′)b(s).

From the translation procedure, we can replace Tρ and Oρ and πρ(b) with their POMDP-IR
counterparts:

Pr(z|b, πρ(b)) =
∑
s

∑
s′′

OIR(s′′, πnIR(b), z)TIR(s, πnIR(b), s′′)b(s)

= Pr(z|b, πIR(b)). (28)

Similarly, for the belief update equation,

bπρ(b),z =
Oρ(s

′, πρ(b), z)

Pr(z|πρ(b), b)
∑
s

b(s)Tρ(s, πρ(b), s
′)

=
OIR(s′, πnIR(b), z)

Pr(z|πnIR(b), b)

∑
s

b(s)TIR(s, πnIR(b), s′)

= bπIR(b),z.

(29)

Substituting the above result in (27) yields:

V ρ
t (b) = ρ(b) +

∑
z

Pr(z|b, πIR(b))V IR
t−1(bπIR(b),z). (30)

Since the inductive assumption tells us that V ρ
t−1(b) = V IR

t−1(b) and (26) shows that
ρ(b) = maxap

∑
s b(s)R(s, ap),

V ρ
t (b) = [max

ap

∑
s

b(s)R(s, ap) +
∑
z

Pr(z|b, πIR(b))V IR
t−1(bπIR(b),z)]

= V IR
t (b).

(31)

The main implication of the theorem 1 and 2 is that any result that holds for either ρPOMDP
or POMDP-IR also holds for the other framework. For example, the results presented in theorem
4.3 in Araya-López et al. [2] that bound the error in the value function of ρPOMDP also hold
for POMDP-IRs. Thus, there is no significant difference between the two frameworks and both
can be used with equal efficacy to model active perception.
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5 Decomposed Maximization

As mentioned in Section 3.2, the addition of prediction actions leads to a blowup in the size
of the joint action space. However, the transition and observation functions are independent of
these prediction actions. Furthermore, reward is independent of normal actions. A consequence
of these independence properties is that the maximization over actions performed in (4) can, in
a POMDP-IR, be decomposed into two simpler maximizations, one over prediction actions and
one over normal actions:

V ∗t (b) = max
ap

∑
s

b(s)R(s, ap) + max
an

∑
z

Pr(z|an, b)V ∗t−1(ban,z). (32)

In other words, maximization of immediate reward need only consider prediction actions and
maxmization over future reward need only consider normal actions. Note that, in the special
case where the POMDP-IR reward function is defined as in (13), the first term in (32) is simply
the max of the belief, maxs b(s).

In this section, we show how to exploit this decomposition in exact and point-based methods.

5.1 Exact Methods

Exact methods cannot directly exploit the decomposition as they do not perform an explicit
maximization. However, they can be made faster by separating the pruning steps that they
employ. First, we generate a set of vectors just for the prediction actions: ΓR = {αap : ap ∈ Ap},
where for all s ∈ S, αap(s) = R(s, ap). Then, we generate another set of vectors for the normal
actions, as in a standard exact solver:

Γan,zt = {αan,zi (s) : αi ∈ Γt−1},

αan,zi (s) =
∑
s′∈S

T (s, an, s
′)O(s′, an, z)αi(s

′),

Γant = Γan,z1 ⊕ Γan,z2 . . .

(33)

Finally, we can compute Γt as follows:

Γt = prune(prune(ΓR)⊕ prune(∪an∈ApΓant )). (34)

This is essentially a special case of incremental pruning [5], made possible by the special
structure of the POMDP-IR. The independence properties enable the normal and prediction
actions to be treated separately. This, in turn allows us to prune ΓR and Γant separately resulting
in faster pruning (because of smaller size) and hence faster computation of the final Γ-set.

5.2 Point-Based Methods

Point-based methods do explicitly maximize for sampled beliefs in B. Thus, we can construct
a point-based method that exploits this decomposed maximization to solve POMDP-IRs more
efficiently.

Having computed ΓR and Γan,zt as above, we can compute each element of Γant = {αanb : b ∈
B} using decomposed maximization. For all s ∈ S,

αanb (s) = arg max
α∈ΓR

∑
s

b(s)α(s) +
∑
z

arg max
α∈Γan,zt

∑
s

b(s)α(s). (35)
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As before, we can then select the best α-vector for each b ∈ B, but now we only have to
maximize across the αanb ’s:

αb(s) = arg max
αanb

(∑
s

αanb (s)b(s)

)
Γt = ∪b∈B αb.

(36)

By decomposing the maximization, this approach avoids iterating over all |An||Ap| joint actions.
At each timestep t, this approach generates |An||Ω||Γt−1|+ |Ap| backprojections and then prunes
them to |B| vectors, yielding a computational complexity of O(|S||B|(|Ap| + |An||Ω||Γt−1|)).
By contrast, a naive application of point-based methods in POMDP-IR has a complexity of
O(|S||B||Ap||An||Ω||Γt−1|). Hence, the advantages of the POMDP-IR framework can be achieved
without incurring significant additional computational costs due to the blowup in the size of the
joint action space.

6 Experiments

In this section, we present the results of experiments designed to confirm the computational
benefits of decomposing the maximization, measure the effects on performance of the choice of
prediction actions/tangents, and compare the costs and benefits of myopic versus non-myopic
planning. We consider the task of tracking people in a surveillance area with a multi-camera
tracking system. The goal of the system is to select a subset of cameras, to correctly predict the
position of people in the surveillance area, based on the observations received from the selected
cameras.

We compare the performance of POMDP-IR with decomposed maximization to a naive
POMDP-IR that does not decompose the maximization. Thanks to Theorem 1 and 2, these ap-
proaches have performance equivalent to their ρPOMDP counterparts. We also compare against
two baselines. The first is a weak baseline we call the rotate policy in which the agent simply
keeps switching between cameras on a turn-by-turn basis. The second is a stronger baseline we
call the coverage policy, which was developed in earlier work on active perception [19, 20]. As
in POMDP-IR, cameras are selected according to a policy computed by a POMDP planner.
However, instead of using prediction actions, the state-based reward function simply rewards
the agent for observing the person, i.e., the agent is encouraged to select the cameras that are
most likely to generate positive observations.

6.1 Simulated Setting

We start with experiments conducted in a simulated setting, first considering the task of tracking
a single person with a multi-camera system and then considering the more challenging task of
tracking multiple people.

6.1.1 Single-Person Tracking

We start by considering the task of tracking one person walking in a grid-world composed of
|S| cells and N cameras. At each timestep, the agent can select only K cameras, where K ≤ N .
Each selected camera generates a noisy observation of the person’s state. The agent’s goal is to
minimize its uncertainty about the person’s state. In the experiments in this section, we fixed
K = 1 and N = 10.

We model this task as a POMDP with one state for each grid cell. A normal action is
a vector of N binary action features indicating whether the given camera is selected. Unless
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Figure 3: (a) Performance comparison between POMDP-IR with decomposed maximization,
naive POMDP-IR, coverage policy, and rotate policy; (b) Runtime comparison between
POMDP-IR with decomposed maximization and naive POMDP-IR; (c) Behaviour of

POMDP-IR policy; (d) Behaviour of coverage policy.

stated otherwise, there is one prediction action for each state and the agent gets a reward of +1
if it correctly predicts the state and 0 otherwise. An observation is a vector of N observation
features, each of which specifies the person’s position as estimated by the given camera. If a
camera is not selected, then the corresponding observation feature has a value of null. The
transition function T (s, s′) = Pr(s′|s) is independent of actions as the agent’s role is purely
observational. It specifies a uniform probability of staying in the same cell or transitioning to a
neighboring cell.

To compare the performance of POMDP-IR to the baselines, 100 trajectories were simulated
from the POMDP. The agent was asked to guess the person’s position at each time step. Figure
3(a) shows the cumulative reward collected by all four methods. As expected, POMDP-IR with
decomposed maximization and naive POMDP-IR perform identically. However, Figure 3(b),
which compares the runtimes of POMDP-IR with decomposed maximization and naive POMDP-
IR, shows that decomposed maximization yields a large computational savings.

Figure 3(a) also shows that POMDP-IR greatly outperforms the rotate policy and modestly
outperforms the coverage policy. Figures 3(c) and 3(d) illustrate the qualitative difference be-
tween POMDP-IR and the coverage policy. The blue lines mark the point when the agent chose
to observe the cell occupied by the person and the red lines plot the max of the agent’s belief.
The main difference between the two policies is that once POMDP-IR gets a good estimate of
the state, it proactively observes neighboring cells to which the person might transition. This
helps it to more quickly find the person when she moves. By contrast, the coverage policy always
looks at the cell where it believes the person to be. Hence, it takes longer to find her again when
she moves. This is evidenced by the fluctuations in the max of the belief, often drops below 0.5
for the coverage policy, while it rarely does so for POMDP-IR.

Next, we examine the effect of approximating a true reward function like belief entropy with
more and more tangents. Figure 1 illustrates how adding more tangents can better approximate
negative belief entropy. To test the effects of this, we measured the cumulative negative belief
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Figure 5: (a) Performance comparison for myopic vs. non myopic policies; (b) Performance
comparison for myopic vs non myopic policies in budget-based setting.

entropy when using between one and four tangents per state. Figure 4 shows the results and
demonstrates that, as more tangents are added, the performance in terms of the true reward
function improves. However, performance also quickly saturates, as four tangents perform no
better than three.
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Figure 4: Performance comparison as negative belief
entropy is better approximated.

Next, we compare the perfor-
mance of POMDP-IR to a myopic
variant that seeks only to maximize
immediate reward, i.e., h = 1. We
perform this comparison in three
variants of the task. In the highly
static variant, the state changes very
slowly: the probability of staying is
the same state is 0.9. In the mod-
erately dynamic variant, the state
changes more frequently, with a
same-state transition probability of
0.7. In the highly dynamic variant,
the state changes rapidly (with a same-state transition probability of 0.5). Figure 5(a) shows
the results of these comparisons. In each setting, non-myopic POMDP-IR outperforms myopic
POMDP-IR. In the highly static variant, the difference is marginal. However, as the task be-
comes more dynamic, the importance of look-ahead planning grows. Because the myopic planner
focuses only on immediate reward, it ignores what might happen to its belief when the state
changes, which happens more often in dynamic settings.

Finally, we compare the performance of myopic and non-myopic planning in a budget-
constrained environment. This specifically corresponds to energy-constrained environment, where
it is not possible to keep the cameras on for all the time but the camera can be employed only
a few times over the entire trajectory. This is augmented with resource-constraints, so that the
agent has to plan not only when to use the camera, but also decide which camera to select.
Specifically, the agent can only employ the camera a total of 15 times across all 50 timesteps.
On the other timesteps, it must select an action that generates only a null observation. Figure
5(b) shows that non-myopic planning is of critical importance in this setting. Whereas myopic
planning greedily consumes the budget as quickly as possible, non-myopic planning saves the
budget for situations in which it is highly uncertain about the state.

6.1.2 Multi-Person Tracking

To extend our analysis to a more challenging problem, we consider a simulated setting in which
multiple people must be tracked simultaneously. Since |S| grows exponentially in the number
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Figure 6: (a) Multi-person tracking performance for POMDP-IR and coverage policy.
(b)Performance of POMDP-IR and coverage policy when only important cells must be tracked.

of people, the resulting POMDP quickly becomes intractable. Therefore, we compute instead a
factored value function Vt(b) =

∑
V i
t (bi) where V i

t (bi) is the value of the agent’s current belief bi

about the i-th person. Thus, V i
t (bi) needs to be computed only once, by solving a POMDP of the

same size as that in the single-person setting. During action selection, Vt(b) is computed using
the current bi for each person. This kind of factorization corresponds to the assumption that
each person’s movement is independent of that of other people. Although violated in practice,
such an assumption can nonetheless yield good approximations.

Figure 6 (a), which compares POMDP-IR to the coverage policy with one, two, and three
people, shows that the advantage of POMDP-IR grows substantially as the number of people
increases. Whereas POMDP-IR tries to maintain a good estimate of everyone’s position, the
coverage policy just tries to look at the cells where the maximum number of people might be
present, ignoring other cells completely.

Finally, we compare POMDP-IR and the coverage policy in a setting in which the goal
is only to reduce uncertainty about a set of “important cells” that are a subset of the whole
state space. For POMDP-IR, we prune the set of prediction actions to allow predictions only
about important cells. For the coverage policy, we reward the agent only for observing people in
important cells. The results, shown in Figure 6 (b), demonstrate that the advantage of POMDP-
IR over the coverage policy is even larger in this variant of the task. POMDP-IR makes use of
information coming from cells that neighbor important cells (which is of critical importance
if the important cells do not have good observability), while the coverage policy does not. As
before, the difference gets larger as the number of people increases.

6.2 Hallway Dataset

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

Timestep

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

 

 

 POMDP−IR

Coverage policy

Figure 7: Performance of POMDP-IR and the
coverage policy on the hallway dataset.

To extend our analysis to a more realistic
setting, we used a dataset collected by four
stereo overhead cameras mounted in a hall-
way. Tracks were generated from the recorded
images using a proprietary software package
[1]. For each person recorded, one track is
generated after processing observations com-
ing from all four cameras. The dataset consists
of a recording of 30 tracks, specifying the x-y
position of a person through time.

To learn a POMDP model from the
dataset, we divided the continuous space into
32 cells (|S| = 33: 32 cells plus an external
state indicating the person is no longer in the hallway). Using the data, we learned a maximum-
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Figure 8: Sample tracks for all cameras; each color denotes all tracks observed by a given
camera; boxes denote regions of high overlap between cameras.

likelihood tabular transition function. Since we do not have ground truth about people’s loca-
tions, we introduced random noise into the observations. For each camera and each cell in that
camera’s region, the probability of a false positive and false negative were set by uniformly sam-
pling a number from the interval [0, 0.25]. Figure 7 shows that POMDP-IR again substantially
outperforms the coverage policy, for the same reasons mentioned before.

6.3 Shopping Mall Dataset

Finally, we extended our analysis to a real-life dataset collected in a shopping mall. This dataset
was gathered over 4 hours using 13 CCTV cameras located in a shopping mall [4]. Each camera
uses a FPDW [7] pedestrian detector to detect people in each camera image and in-camera
tracking [4] to generate tracks of the detected people’s movements over time. The dataset consists
of 9915 tracks each specifying one person’s x-y position over time. Figure 8 shows the sample
tracks from all of the cameras.
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Figure 9: Performance of POMDP-IR and the
coverage policy on the shopping mall dataset.

To learn a POMDP model from the
dataset, we divided the continuous space into
20 cells (|S| = 21: 20 cells plus an external
state indicating the person has left the shop-
ping mall). As before, we learned a maximum-
likelihood tabular transition function. How-
ever, in this case, we were able to learn a
more realistic observation. Because the cam-
eras have many overlapping regions (see Fig-
ure 8), we were able to manually match tracks
of the same person recorded individually by
each camera. The “ground truth” was then
constructed by taking a weighted mean of the matched tracks. Finally, this ground truth was
used to estimate noise parameters for each cell (assuming zero-mean Gaussian noise), which
was used as the observation function. Figure 9 shows that, as before, POMDP-IR substantially
outperforms the coverage policy for various numbers of cameras. In addition to the reasons
mentioned before, the high overlap between cameras contributes to POMDP-IR’s superior per-
formance. The coverage policy has difficulty ascertaining people’s exact locations because it is
rewarded only for observing them somewhere in a camera’s large overlapping region, whereas
POMDP-IR is rewarded for deducing their exact locations.
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7 Conclusions & Future Work

This paper presented a detailed analysis of ρPOMDP and POMDP-IR, two frameworks for
modeling active perception tasks while preserving the PWLC property of value functions. We
established the mathematical equivalence of the two frameworks and showed that both admit
a decomposition of the maximization performed in the Bellman optimality equation, yielding
substantial computational savings. We also presented an empirical analysis on data from both
simulated and real multi-camera tracking systems that illustrates these savings and analyzes
the critical factors in the performance of POMDP planners in such tasks. In future work, we
aim to develop richer POMDP models that can represent continuous state features and dynamic
numbers of people to be tracked. In addition, we aim to consider hybrid tasks, perhaps modeled
in a multi-objective way, in which active perception must be balanced with other goals.
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[2] Mauricio Araya-López, Olivier Buffet, Vincent Thomas, and François Charpillet. A
POMDP extension with belief-dependent rewards. In Advances in Neural Information
Processing Systems, pages 64–72, 2010.

[3] K. J. Astrom. Optimal control of Markov decision processes with incomplete state estima-
tion. Journal of Mathematical Analysis and Applications, pages 174–205, 1965.

[4] Henri Bouma, Jan Baan, Sander Landsmeer, Chris Kruszynski, Gert van Antwerpen, and
Judith Dijk. Real-time tracking and fast retrieval of persons in multiple surveillance cameras
of a shopping mall. In SPIE Defense, Security, and Sensing, pages 87560A–87560A–13,
2013.

[5] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental pruning: A
simple, fast, exact method for partially observable Markov decision processes. In In Pro-
ceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 54–61,
1997.

[6] Thomas M Cover and Joy A Thomas. Entropy, relative entropy and mutual information.
Elements of Information Theory, 1991.

[7] Piotr Dollár, Serge Belongie, and Pietro Perona. The fastest pedestrian detector in the
west. In Proceedings of the British Machine Vision Conference (BMVC), pages 2903–2910,
2010.

[8] Adam Eck and Leen-Kiat Soh. Evaluating POMDP rewards for active perception. In
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems, pages 1221–1222, 2012.

[9] Shihao Ji, R. Parr, and L. Carin. Nonmyopic multiaspect sensing with partially observable
Markov decision processes. Signal Processing, IEEE Transactions on, pages 2720–2730,
2007.

[10] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[11] Chris Kreucher, Keith Kastella, and Alfred O. Hero, III. Sensor management using an
active sensing approach. Signal Processing, 85(3):607–624, 2005.



REFERENCES 16

[12] Vikram Krishnamurthy and Dejan V Djonin. Structured threshold policies for dynamic sen-
sor scheduling: A partially observed markov decision process approach. Signal Processing,
IEEE Transactions on, 55(10):4938–4957, 2007.

[13] Prabhu Natarajan, Trong Nghia Hoang, Kian Hsiang Low, and Mohan Kankanhalli.
Decision-theoretic approach to maximizing observation of multiple targets in multi-camera
surveillance. In Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, pages 155–162, 2012.

[14] Joelle Pineau, Geoffrey J Gordon, and Sebastian Thrun. Anytime point-based approxima-
tions for large POMDPs. Journal of Artificial Intelligence Research (JAIR), 27:335–380,
2006.

[15] Stephane Ross, Joelle Pineau, Sebastien Paquet, and Brahim Chaib-draa. Online planning
algorithms for POMDPs. Journal of Artificial Intelligence Research, pages 663–704, 2008.

[16] Yash Satsangi, Shimon Whiteson, and Frans Oliehoek. Exploiting submodular value func-
tions for faster dynamic sensor selection. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, pages 3356–3363, January 2015.

[17] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[18] Edward J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD
thesis, Stanford University, United States – California, 1971.

[19] Matthijs T. J. Spaan. Cooperative active perception using POMDPs. In AAAI 2008
Workshop on Advancements in POMDP Solvers, 2008.

[20] Matthijs T. J. Spaan and Pedro U. Lima. A decision-theoretic approach to dynamic sensor
selection in camera networks. In International Conference on Automated Planning and
Scheduling, pages 279–304, 2009.

[21] Matthijs T. J. Spaan, Tiago S. Veiga, and Pedro U. Lima. Decision-theoretic planning
under uncertainty with information rewards for active cooperative perception. Autonomous
Agents and Multi-Agent Systems, 29(6):1157–1185, 2015.

[22] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based value iteration
for POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

[23] J.L. Williams, J.W. Fisher, and A.S. Willsky. Approximate dynamic programming for
communication-constrained sensor network management. Signal Processing, IEEE Trans-
actions on, 55:4300–4311, 2007.



Acknowledgements

We thank Henri Bouma and TNO for providing us with the dataset used in our experiments.
We also thank the STW User Committee for its advice regarding active perception for multi-
camera tracking systems. This research is supported by the Dutch Technology Foundation STW
(project #12622), which is part of the Netherlands Organisation for Scientific Research (NWO),
and which is partly funded by the Ministry of Economic Affairs.



IAS reports

This report is in the series of IAS technical reports. The series editor is Bas
Terwijn (B.Terwijn@uva.nl). Within this series the following titles appeared:

[Satsangi(2014)] Y.Satsangi, S. Whiteson and F.A.Oliehoek Exploiting Submodular
Value Functions for Dynamic Sensor Selection Technical Report IAS-UVA-14-
02, Informatics Institute, University of Amsterdam, The Netherlands, November
2014

[Oliehoek(2014)] F.A. Oliehoek and C. Amato Dec-POMDPs as Non-Observable
MDPs Technical Report IAS-UVA-14-01, Informatics Institute, University of
Amsterdam, The Netherlands, November 2014.

[Visser(2012)] A. Visser UvA Rescue Technical Report: a description of the methods
and algorithms implemented in the UvA Rescue code release Technical Report
IAS-UVA-12-02, Informatics Institute, University of Amsterdam, The Nether-
lands, September 2012.

[Visser(2012)] A. Visser A survey of the architecture of the communication library
LCM for the monitoring and control of autonomous mobile robots Technical
Report IAS-UVA-12-01, Informatics Institute, University of Amsterdam, The
Netherlands, September 2012.

All IAS technical reports are available for download at the ISLA website:
http://isla.science.uva.nl/node/85


